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Abstract. We address the problem of domain adaptation (DA) in the
context of remote sensing (RS) image classification in this paper. By
definition, the problem of unsupervised DA aims at classifying samples
from a target domain which is strictly devoid of any label information
while assuming that enough training data are available from a related yet
non-identical (in terms of data distributions) source domain. A number
of existing approaches in this regard are focused towards matching the
underlying distributions of the data from both the domains in a shared
latent space without explicitly considering: i) the discriminativeness of
the embedding space, ii) the usefulness of a manifold distance is pulling
the domains towards each other over the standard Euclidean measures.
However, we argue the importance of both the aspects in learning the
latent space, particularly for fine-grained classes. Our model jointly op-
timizes both the terms in an end-to-end fashion and the learned latent
space is found to properly align the classes with high precision. Experi-
mental results obtained on a hyper-spectral and a multi-spectral dataset
confirm the superior performance of the approach over a number of tech-
niques from the literature.

Keywords: Domain adaptation ·Metric learning · Representation learn-
ing · Remote sensing.

1 Introduction

Remote sensing (RS) image analysis [1] is currently considered an active field
of research, thanks to the ample amount of data acquired by a wide range of
satellite-onboard sensors periodically. However many of the machine learning
algorithms (predominantly supervised methods), that work on RS images in-
herently assume that the training and test samples are drawn from similar un-
derlying distributions, which is often violated in analyzing multi-temporal RS
images where the land-cover properties change due to seasonal effects, presence
of cloud covers during the imaging process (considering passive sensors for data
acquisition), man-made changes on ground, from one image to another.
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Generation of training samples, in general, is a costly and time-consuming
process and the challenges proportionately grow for the case of multi-temporal
RS image sequences with many images. However considering that the labeled
samples are available for some of the images in the sequence, the problem can
now be formulated to classifying the images with no prior label information
by judicious knowledge transfer from the images with available training data.
Domain Adaptation (DA) [3] is a popular inductive transfer learning approach
to handle such a critical classification framework.

DA techniques are used to build a classifier taking into consideration the
mismatch in the distributions governing the training and test data. The training
domain is generally termed as the source domain which is accumulated with an
ample amount of labeled data (images with training samples) while the test do-
main is termed as the target domain. Note that the target domain may or may
not contain any label information, based on which DA can further be classified
as semi-supervised or unsupervised DA, respectively. Our focus is on the chal-
lenging unsupervised DA setup which tries to compensate for the degradation
in classification performance by transferring knowledge from the labeled source
domain to the unlabeled target domain.

Historically, machine learning literature is rich in DA techniques. There have
been several endeavors towards feature adaptation (making the source and target
features overlapping in some latent space) and classifier adaptation (making the
classifier trained on the source domain samples to gradually adapt to the target
domain properties). However, the classifier adaptation based techniques seldom
suffer from the problem of source forgetting since the classifier iteratively finds
its bias towards the target domain. The feature adaptation based approaches
are resilient to such bottlenecks and have shown better performance in diverse
scenarios including image, speech, text, to name a few.

Amongst the feature adaptation based approaches, the current trend to over-
come the problem of domain mismatch by mapping the cross-domain samples on
a shared subspace using deep neural network-based modules which make the en-
tire process data-driven. This is generally achieved by minimizing some measure
of domain variance, like the Maximum Mean Discrepancy (MMD) [7]. Likewise,
a recently proposed Deep CORAL method [5] aligns second-order statistics of
the source and the target distribution by constructing a differentiable loss func-
tion that minimizes the difference between the source and target correlations
which the authors termed as the CORAL loss. However, to the best of our
knowledge, the majority of such methods do not consider the discriminativeness
of the learned embedding space, which nonetheless causes misclassification for
fine-grained classes. Hence, the notion of learning a discriminative subspace is
of prime interest for improved cross-domain classification.

Contributions : Inspired from the aforementioned discussions, we prose an
end-to-end trainable neural network-based unsupervised DA module that learns
a shared embedding space for the samples of both the domains which are also
deemed to be discriminative. In particular, while a contrastive loss measure [6]
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is considered on the latent source domain labeled samples which is responsible
to make the latent representations compact class-wise, simultaneously the do-
main difference is reduced in terms of minimizing the difference of the between-
domain higher-order statistics. Experimental results obtained on two benchmark
RS datasets showcase the superiority of the proposed DA module over several
standard approaches.

2 Related Work

Unsupervised DA techniques are extensively applied in handling multi-temporal
RS images on the ground captured at different time instances. Ad-hoc approaches
for unsupervised DA usually consist of matching the feature distribution between
the source and target domain [10, 11] by exploring standard distance measures
between distributions. These methods can generally be divided into two cate-
gories: (i) sample re-weighting [12, 13] and (ii) feature space transformation [15,
16], respectively. Besides, techniques based on metric learning [19], subspace
alignment [20] and nonlinear transformation based on graph node matching [21]
are explored in conjunction with different cross-domain RS images.

On the other hand, adaptive deep neural networks have recently been ex-
plored for unsupervised DA for image classification. For example, DLID [22]
trains a joint source and target CNN architecture with two adaptation layers.
Similarly, DDC [23] applies a single linear kernel to one layer to minimize the
Maximum Mean Discrepancy (MMD). Deep CORAL applies CORAL loss to
minimize the difference in learned feature covariances across source and target
domain. Deep LogCORAL similar to the Deep CORAL method, proposes to use
the Riemann distance, approximated by Log-Euclidean distance to replace the
naive Euclidean distance in Deep CORAL.

We propose a metric learning-based approach that minimizes the feature
covariances of the source and the target domain ( using CORAL and LogCORAL
losses separately) and at the same time form better clustering of similar images
by Contrastive loss on labeled source data for better fine-grained classification
of multi-temporal RS images.

3 Method

We consider the unsupervised DA situation where there are no labels associated
with the target domain data distribution. Since the RS image data can be very
challenging, like the Botswana dataset, with overlapping classes and very small
feature vector for each image, we first try to learn a similarity-based classifier to
obtain good clustering of data based on their respective classes to avoid overlap.
For the second goal of reducing covariance between the source and target domain,
we propose to minimize the difference in second-order statistics between the
source and target feature activations, i.e. the CORAL/logCORAL loss. Fig. 1
shows a sample architecture of our proposed model. The two losses are trained
end-to-end.
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Fig. 1. Sample structure of our model. We determine whether the inputs are from same
domain or not using the similarity labels of pair. If the input pairs are both from source
domain, then we compute the Source Loss based on their class labels. Otherwise if one
vector from source and other from target domain, we compute the Cross-Domain Loss.

This approach is based on the assumption that minimizing the difference
between the second-order statics would bring the target domain to overlap with
the source domain. Since cross-domain data point is inherently closer to their
respective classes than of different classes of different domains, similarity-based
learning on the source domain data would also make nice clusterings for target
domain data points in the domain invariant feature space. Joint training with
both the losses is likely to learn features that work well on the target domain:

LTotal = KLSource + λ(1−K)LCrossDomain (1)

where covariance loss denotes CORAL or logCORAL loss, K = 1 if pairs are
from the same domain, K = 0 if pairs are from a different domain. λ is a trade
off between domain adaptation and clustering accuracy on the source domain.

3.1 Source Loss

For the purpose of finding a function that maps input patterns to the domain
invariant space based on neighborhood relationship between samples, we use
Contrastive Loss. The basis of the creation of clusters are the class labels of
source domain data inputs. This loss function works on pairs of samples. Let
X1,X2 ∈ I be a pair of input source domain vectors. Let Y be a binary label
assigned to this pair. Y = 0 if X1 and X2 are deemed similar, and Y = 1 if they
are deemed dissimilar. Define the parameterized distance function to be learned
DW between X1 and X2 as the Euclidean distance between the outputs of GW ,
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Fig. 2. Accuracy of model (a) Trained on TR1(source) and TR2(target) and Test
on TS2, (b) Trained on TR2(source) and TR1(target) and Test on TS1 for different
manifold output dimensions. (c) The loss curve for Contrastive and CORAL Loss, (d)
Contrastive and LogCORAL Loss trained on TR2(source) and TR1(target) and test
on TS1.

where GW is the output values of X1 and X2 from the network. That is,

DW (X1,X2) = ||GW (X1)−GW (X2)|| (2)

To shorten notation, DW (X1,X2) is written DW . Then the loss function in its
most general form is:

κ(W ) =

P∑
i=1

L(W, (Y,X1,X2)i) (3)

L(W, (Y,X1,X2)i = (1− Y )LS(Di
W ) + Y max(0,m− LD(Di

W )) (4)

where (Y,X1,X2)i is the ith labeled sample pair, LS is the partial loss function
for a pair of similar points, LD is the partial loss function for a pair of dissimilar
points, and P the number of training pairs (which may be as large as the square
of the number of samples). m is the margin for dissimilar sample pair. The value
of m for this experiment was taken as 1.0.
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3.2 Cross-Domain Loss

Let us denote DS = [x1, ...,xnS
] as the source domain features extracted from

the last layer of the model as shown in the Fig. 1, where xi is the ith source
sample, and DT = [u1, ...,unT

] as the unlabeled target domain feature extracted
from the final layer, where ui is the ith training sample. To overlap the target
source domain features with their corresponding source domain features, we try
to reduce the covariance between them. For this purpose, we found that the
most appropriate loss metrics to be CORAL and logCORAL loss and trained
our model on them separately to compare performance.

CORAL loss [5] calculates the distance of second-order statics between the
two domains. The covariance matrix of features is calculated from the output of
the final layer for each domain which then minimizes the Euclidean distance of
the covariance matrices of two domains. The CORAL loss is defined as follows:

LCORAL =
1

4d2
||CS −CT||2 (5)

in which the covariance matrices CS and CT are defined as follows:

CS =
1

nS − 1
(DT

S DS −
1

nS
(1TDS)T(1TDS)) (6)

CT =
1

nT − 1
(DT

TDT −
1

nT
(1TDT)T(1TDT)) (7)

where nS , nT is the batch size of the source domain and target domain re-
spectively. d is the feature dimension, and 1T is a vector that all elements equals
to 1.

[28] shows that measuring matrix distance on Riemannian manifold may be
more precise that Euclidean manifold and give better results in problems related
to Domain Adaptation. According to the above assumption, the logCORAL loss
is a distance measure in the Riemannian manifold. The logCORAL distance is
defined as the Euclidean distance between the logarithm of covariance matrices:

LCORAL =
1

4d2
||log(CS)− log(CT)||2 (8)

where the log() operation is the logarithm of the covariance matrix and CS

and CT are the covariance matrix for source and target domain respectively as
defined in CORAL loss.

Minimizing the Source loss itself is going to over-fit for the source domain
and give poor clusterings for the target domain. On the other hand, reducing the
Cross-Domain loss would lead to degenerate features as the network will project
all the source and target data to a single point leading to zero Cross-Domain loss.
Jointly training the network on Cross-Domain loss with Source loss will make
the network learn the desirable domain invariant mapping into feature space.
We show that these two losses play counterparts and reach an equilibrium at the
end of the training, where the final features are expected to work well on the
target domain.
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Model TR1→TS2 TR2→TS1

TCA 69.88 61.00

GFK 72.89 65.50

CORAL 54.54 47.36

SA 72.88 68.52

STK 75.28 70.20

BDA 62.52 50.72

Auto-Encoder 67.46 62.69

our(CORAL) 76.08 69.73

our(LogCORAL) 76.24 71.09
Table 1. Performance comparison with baseline models in domain adaptation.The first
column gives test accuracy on TS2 with training on TR1(source)+TR2(target) while,
second column gives test accuracy on TS1 with training on TR2(source)+TR1(target).
The second last model uses CORAL w/ CONTRASTIVE Loss. The last model achieves
state of the art result LogCORAL w/ CONTRASTIVE Loss.

4 Experiment

4.1 Dataset

We validate the proposed framework on commonly available but challenging
Botswana hyper-spectral dataset acquired by the Hyperion sensor of the EO-
1 satellite over a 1476 256 pixel study area located in the Okavango Delta,
Botswana. 10 bands among the set of 145 bands are selected based on their
discrimination capability using the method mentioned in [29]. Here, 14 land-
cover classes are identified for two different spatially disjoint areas. There are a
total of 4 sets in this data (2 for each domain). TR1 (train) and TS1 (test) for
one domain and TR2 (train) and TS2 (test) for the second domain. We use all
the labeled source data and all the target unlabeled data.

The second dataset contains two scenes acquired by the ROSIS sensor during
a flight campaign over Pavia, northern Italy. The number of spectral bands is 102
for Pavia Centre and 103 for Pavia University. To make both of them of equal
dimension, we use PCA to reduce the number of dimensions to 50. The geometric
resolution is 1.3 meters. Both image ground-truths differentiate 9 classes each
out of which we use 7 classes common to both.

4.2 Model Specifications

In this experiment, we apply the Source loss and Cross-Domain loss from the
features extracted from the last layer (fc3) of the model. In training for both
losses, we set the batch size to 32, the learning rate to 10−3, weight decay to 0.
We train a small 3-layer fully-connected neural network on the features extracted
from fc3 for source domain for classification purpose.
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Model PaviaC→PaviaU PaviaU→PaviaC

Auto-Encoder 46.14 46.64

D-CORAL 47.72 45.86

D-LogCORAL 47.81 56.32
Table 2. Performance comparison with our models with Auto-Encoder in domain
adaptation.The first column gives test accuracy on PaviaU with training on Pavi-
aCentre while, second column gives test accuracy on PaviaCentre with training on
PaviaU. The second last model uses CORAL and CONTRASTIVE Loss. The last
model achieves state of the art result LogCORAL w/ CONTRASTIVE Loss.

4.3 Choosing fc3 (final) layer dimension

To decide what is the optimal dimension of the fc3 layer for the Botswana and
Pavia dataset, we train different networks with output dimension sizes of 5, 10,
16, 32 and 64. Based on the accuracies from the classifier applied to the output
of fc3 for the domain shifts on both datasets, we get the maximum accuracy
for the fc3 layer with dimension 32. In Fig. 2(a) and 2(b) we have plotted the
accuracies from different output layer dimensions for the Botswana dataset.

4.4 Performance between CORAL and logCORAL loss

We try using CORAL and logCORAL loss separately for reducing covariance
across domains. From accuracy results, we find that logCORAL loss outperforms
CORAL loss by a narrow margin of around 0.2%−0.3% (source TR2, target TR1,
test TS1: CORAL accuracy-69.73%, logCORAL accuracy-71.09% and source
TR1, target TR2, test TS2: CORAL accuracy-76.08%, logCORAL accuracy-
76.24%) for Botswana Dataset and relatively a large margin of 9% on Pavia
Dataset ( source PaviaU, target PaviaC: CORAL accuracy-47.81%, logCORAL
accuracy-56.32%).

4.5 Comparison with popular DA techniques

We compare the generalization performance of the proposed framework with that
of six popular and diverse unsupervised DA techniques from the literature as fol-
lows:
a) TCA [9]
b) Subspace alignment (SA) based DA [14]
c) GFK-based subspace projection [35]
d) CORAL with SVM
e) STL
f) BDA

GFK, SA, and TCA are manifold based methods that project the source and
target distributions into a lower-dimensional manifold and are not end-to-end
deep methods. In all the cases, we first project the data in the embedding space
and further design a multiclass SVM classifier (with RBF kernel) in the new
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space exploiting the projected source domain training samples. The classifier is
further evaluated on the projected target domain test samples. From Table 1 we
see that our model achieves better performance for both domain shifts than the
6 baseline methods with a relative margin of 1-2%. We can see that even though
Cross-Domain loss is not always decreasing, it gets to a relatively stable state
after a few epochs.

5 Conclusion

In this paper, we propose a novel neural network architecture for unsupervised
domain adaptation. We show that semantic similarity learning with the reduc-
tion in covariance between the source and target dataset can outperform the
’standard’ convolution neural network in the domain adaptation problem. The
method is feasible and simple. We demonstrate that this model achieves state-
of-the-art performance on the Botswana dataset. Future works include using a
similarity learning that adaptively assesses similarity based on distribution on
representation space rather than penalizing individual pairs based on the notion
of labels and with different domain discrepancy reduction algorithms (such as
MMD and its variants). It will also be of interest to determine how this model
performs on very high-resolution satellite images
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